📌 Basic Chart Visualization with Pandas
import pandas as pd
import matplotlib.pyplot as plt
# Sample DataFrame
data = {'Category': ['A', 'B', 'C', 'D'],
'Values': [10, 25, 7, 30]}
df = pd.DataFrame(data)
# Line Plot
df.plot(x='Category', y='Values', kind='line', marker='o', title='Line Chart')
# Show Plot
plt.show()
📌 Types of Charts with Pandas .plot()
You can specify the kind parameter to create different charts:
df.plot(kind='line') # Line chart
df.plot(kind='bar') # Bar chart
df.plot(kind='barh') # Horizontal bar chart
df.plot(kind='hist') # Histogram
df.plot(kind='box') # Boxplot
df.plot(kind='area') # Area chart
df.plot(kind='scatter', x='Category', y='Values') # Scatter plot
📌 Using Seaborn for Better Styling
import seaborn as sns
sns.barplot(x='Category', y='Values', data=df)
plt.show()